Conversations Predict Social Network Learning

Helen Schmidt, Sophia Tran, \& Chelsea Helion

Department of Psychology \& Neuroscience, Temple University

Background

- Relatively little is known about how people dynamically learn about real-world relational associations and social network structures ${ }^{1,2}$
- Features of interpersonal conversations - such as linguistic styles, positive and negative sentiment, and verbal tone - may play a key, yet understudied role in social network learning ${ }^{3-8}$
- This research leverages naturalistic stimuli and natural language processing methods to examine how individuals learn about a realworld social network structure via passive observation

Hypothesis 1

Successful network learning will be characterized by slower RTs for friend and rival judgments and greater than chance accuracy

Hypothesis 2
Greater semantic similarity, more positive sentiment, and higher clout will be uniquely predictive of relational judgments

Method

TASK DESIGN
 chronologically, split int 6 clips of equal length
$N=57$ participants $M_{\text {age }}=19.08, S_{\text {age }} \pm 1.48$

Participants make binary responses about the extent to which either choice contestant is tronger friends with, stronger rivals with, or more likely to beat the target contestant.
Who has a stronger

$\underset{\substack{\text { chice } \\ \text { contestants }}}{ }$ NATURAL LANGUAGE PROCESSING

Note: icons replaced with contestant
photos in experimental task

Clout Linguistic Inquiry and Word Coun

Cip 4 Dialogue
Semantic
Similarity
Universal Universal
Sentence Encod Sentence Encoder Sentiment sentimentR10

486 total sentences of dialogue

Results

Participants learned similar social network structures via passive observation

$$
\begin{aligned}
& \text { Amber was the season } \\
& \text { winner and Rob was } \\
& \text { the runner-up }
\end{aligned}
$$

Shii Ann was initially on a rival team and Alicia was voted in this episode

Trial Number
A. Participants took longer to answer friendship $(\beta=.45)$ and rivaly ($(\beta=.48)$ questions than win A. estions. B. RT decreased for all block types over time. C. Individuals agreed with group average
greater than chance for friendships (t(t) $)=17.08)$ and rivalies (t(56)) $=15.68) . * * * p<.001$

Semantic similarity and clout, but not sentiment, predicted relationship judgments

Conclusions

- Individuals learned similar social network structures via passive observation
- Conversational linguistic features predicted relational judgments \& network learning

Future Directions

- Using fMRI, investigate neural mechanisms that support social network learning
- Generalize findings using NLP analysis methods with a different episode of Survivor

Or get in touch via email:

